Один моль идеального газа, взятого при температуре , изохорически охладили так, что его давление в сосуде упало в . Затем газ изобарически расширили так, что его температура стала равной первоначальной. Какое количество теплоты получил газ в указанном эксперименте? Универсальная газовая постоянная .
Изобразим в «координатах» PV два последовательных процесса (изохорический (1⟼2) и изобарический (2⟼3)), в которых участвует 1 моль идеального газа согласно условию задачи.
Для каждого из процессов напишем 1-е начало термодинамики:
.
.
Сложив эти два выражения, получим:
.
Здесь мы учли, что газ при изохорическом охлаждении не совершал работы
( ).
Согласно условию задачи начальная (1-я) и конечная (3-я) точки состояния газа принадлежат одной изотерме. Поскольку внутренняя энергия идеального газа зависит только от одного термодинамического параметра – температуры – . В результате получаем, что количество теплоты , которое получил газ в указанном эксперименте, определяется только работой газа при изобарическом процессе:
.
Учтем еще раз, что начальная (1-я) и конечная (3-я) точки состояния газа принадлежат одной изотерме:
.
Окончательно имеем:
.